Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 2555

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Deterministic sampling method using simplex ensemble and scaling method for efficient and robust uncertainty quantification

Endo, Tomohiro*; Maruyama, Shuhei; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 61(3), p.363 - 374, 2024/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Uncertainty quantification (UQ) of the neutron multiplication factor is important to investigate the appropriate safety margin for a target system. Although the random sampling method is a practical and useful UQ method, a large computational cost is required to reduce the statistical error of the estimated uncertainty. Furthermore, if an input variable follows a normal distribution with a large standard deviation, the perturbed input variable by the random sampling method may become a physically inappropriate or negative value. To address these issues for the efficient and robust UQ, a modified deterministic sampling method using the simplex ensemble and the scaling method is proposed. The features of the proposed method are summarized as follows: The sample size is (r+2), where r corresponds to the effective rank of the covariance matrix between the input variables; depending on a situation of target UQ, the amounts of perturbations for the input parameters can be arbitrarily given by the scaling factor method; the scaling factor can be updated to avoid physically inappropriate in the perturbed input variables. The effectiveness of the proposed method is demonstrated through the UQ of the neutron multiplication factor due to fuel manufacturing uncertainties for a typical PWR pin-cell burnup calculation.

Journal Articles

Double-differential cross sections for charged particle emissions from $$alpha$$ particle impinging on Al at 230 MeV/u

Furuta, Toshimasa*; Uozumi, Yusuke*; Yamaguchi, Yuji; Iwamoto, Yosuke; Koba, Yusuke*; Velicheva, E.*; Kalinnikov, V.*; Tsamalaidze, Z.*; Evtoukhovitch, P.*

Journal of Nuclear Science and Technology, 61(2), p.230 - 236, 2024/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Charged particle production from $$alpha$$ particle fragmentation reactions was investigated experimentally by measurement of 230-MeV/u $$alpha$$ particles bombarding an aluminum target. Double differential cross sections were measured for each ejectile of p, d, t, $$^{3}$$He, and $$^{4}$$He at laboratory angles between 15 and 60 deg. The results of analyzed data found the following common characteristics: (1) spectra of proton- and neutron-emission are similar in high energy region at forward angle, (2) triton-to-$$^{3}$$He ratio of $$alpha$$-breakup yield is 1:2, which is similar to lower incident energy experiment, and (3) the shape of broad peak formed by $$^{3}$$He and $$alpha$$ particles could be explained by the process with collision between induced $$alpha$$ particle and target nucleus.

Journal Articles

Uncertainty reduction of sodium void reactivity using data from a sodium shielding experiment

Maruyama, Shuhei; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 61(1), p.31 - 43, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This study investigated the feasibility of reducing the uncertainty associated with fast-reactor-core design by sharing an experimental database between different fields (e.g., reactor physics and radiation shielding) using data assimilation techniques. As the first step in this study, we focused on the ORNL sodium shielding experiment and investigated the possibility of using the experimental data to reduce the uncertainty in sodium void reactivity (SVR), which is the most important safety parameter for sodium-cooled fast reactors. A sensitivity analysis based on the Generalized Perturbation Theory was performed for the sodium shielding experiment. Using the sensitivity coefficients evaluated here and those of the sodium void reactivity previously evaluated by the JAEA, we showed that sodium shielding experimental data can contribute to the uncertainty reduction of SVR by adopting the cross-section adjustment method. Based on this study, the uncertainty reduction effect is expected to be significant, especially for SVR dominated by neutron-leakage phenomena. Although new reactor physics experimental data on SVR may be difficult to obtain, the results of this study suggest that data from sodium shielding experiments can partially substitute for this role. This study demonstrated the value of the mutual use of integral experimental data in fast reactor designs.

Journal Articles

Preliminary study of the criticality monitoring method based on the simulation for the activity ratio of short half-life noble-gas fission products from fuel debris

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi; Kanno, Ikuo

Journal of Nuclear Science and Technology, 8 Pages, 2024/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

Journal Articles

Measurement of the neutron capture cross section of $$^{185}$$Re in the keV energy region

Katabuchi, Tatsuya*; Sato, Yaoki*; Takebe, Karin*; Igashira, Masayuki*; Umezawa, Seigo*; Fujioka, Ryo*; Saito, Tatsuhiro*; Iwamoto, Nobuyuki

Journal of Nuclear Science and Technology, 6 Pages, 2024/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

Journal Articles

Development of a radiation tolerant laser-induced breakdown spectroscopy system using a single crystal micro-chip laser for remote elemental analysis

Tamura, Koji; Nakanishi, Ryuzo; Oba, Hironori; Karino, Takahiro; Shibata, Takuya; Taira, Takunori*; Wakaida, Ikuo

Journal of Nuclear Science and Technology, 8 Pages, 2024/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Journal Articles

A Raman spectroscopy study of bicarbonate effects on UO$$_{2+x}$$

McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kimuro, Shingo; Ishidera, Takamitsu

Journal of Nuclear Science and Technology, 60(12), p.1586 - 1594, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Simulated performance evaluation of d-Be compact fast neutron source

Nakayama, Shinsuke

Journal of Nuclear Science and Technology, 60(12), p.1447 - 1453, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The d+Be neutron source is a candidate for transportable neutron source for on-site nondestructive inspection of infrastructure facilities such as bridges, tunnels and so on. The applicability of the d+Be neutron source to a transportable fast neutron source is explored by Monte Carlo particle transport simulations with PHITS and JENDL-5. The simulation results show that by increasing the shielding thickness by about 1.5 times, it is possible to realize the d+Be neutron source with the comparable performance to another candidate, the 2.5-MeV p+Li neutron source, at lower beam energy.

Journal Articles

Effect of fuel particle size on consequences of criticality accidents in water-moderated solid fuel particle dispersion system

Fukuda, Kodai; Yamane, Yuichi

Journal of Nuclear Science and Technology, 60(12), p.1514 - 1525, 2023/12

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

This study aims to clarify the effect of fuel particle radius on the criticality transient behavior and the total number of fissions in water-moderated solid fuel dispersion systems. Neutronics/thermal hydraulics-coupled kinetics analysis was performed in a hypothetical fuel debris system, where small fuel particles aggregate in water and become supercritical. Results showed that the number of fissions is 10 times larger when the fuel particle radius is reduced by one order of magnitude under conditions where heat transfer, i.e. from fuel to water, is emphasized. Moreover, there is a possibility that lower reactivity could give a larger number of fissions when the fuel particle size is very small. In addition, the number of fissions may be overestimated or underestimated to an unexpected extent unless appropriate fuel particle size is set on the analysis.

Journal Articles

Development of new treatment of fuel isotope vector in the core disruptive accident analysis of fast reactors

Tagami, Hirotaka; Ishida, Shinya; Tobita, Yoshiharu

Journal of Nuclear Science and Technology, 60(12), p.1548 - 1562, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In a design of future Sodium-cooled Fast Reactor, there is a demand for evaluation of sequences and consequences of core disruptive accidents. Future SFRs include a unique core design with axially or horizontally heterogeneous core arrangement having complex fuel isotope distribution. A new model to flexibly represent fuel isotope distribution, called the Pu-vector model, has been developed in this study for inclusion in the SIMMER-III and SIMMER-IV codes (simply called as SIMMER). The model calculates movement of individual fuel isotopes, assuming they always accompany the convecting fuel in the fluid-dynamics model. The accuracy of the Pu-vector model was confirmed by comparing with the standard Monte Carlo static neutronics calculation. The new model can improve some of the limitations in the current SIMMER code, in which the fuel isotopes are represented only by two groups, fertile and fissile fuels. Assignment of a number of fuel isotopes to the two groups requires a detailed examination of different combinations of fuel isotopes to determine an optimized combination. The Pu-vector model can eliminate this complicated procedure to be performed prior to a SIMMER analysis, and more importantly provides accurate spatial distribution of fuel isotopes and thus will improve the applicability of SIMMER to the analyses of future large heterogeneous reactors.

Journal Articles

Estimation of the activity median aerodynamic diameter of plutonium particles using image analysis

Takasaki, Koji; Yasumune, Takashi; Yamaguchi, Yukako; Hashimoto, Makoto; Maeda, Koji; Kato, Masato

Journal of Nuclear Science and Technology, 60(11), p.1437 - 1446, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The aerodynamic radioactive median diameter (AMAD) is necessary information to assess the internal exposure. On June 6, 2017, at a plutonium handling facility in Oarai site of Japan Atomic Energy Agency (JAEA), during the inspection work of a storage container that contains nuclear fuel materials, accidental contamination occurred and five workers inhaled radioactive materials including plutonium. Some smear papers and an air sampling filter were measured with the imaging plate, and we conservatively estimated minimum AMADs for two cases, plutonium nitrate and plutonium dioxide. As a result of AMAD estimation, even excluding a giant particle of a smear sample, the minimum AMADs of plutonium nitrate from smear papers were 4.3 - 11.3 $$mu$$m and those of plutonium dioxide were 5.6 - 14.1 $$mu$$m. Also, the minimum AMAD of plutonium nitrate from an air sampling filter was 3.0 $$mu$$m and that of plutonium dioxide was 3.9 $$mu$$m.

Journal Articles

Development of an integrated non-destructive analysis system, Active-N

Tsuchiya, Harufumi; Toh, Yosuke; Ozu, Akira; Furutaka, Kazuyoshi; Kitatani, Fumito; Maeda, Makoto; Komeda, Masao

Journal of Nuclear Science and Technology, 60(11), p.1301 - 1312, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Measurement of the water-vapor void fraction in a $$4 times 4$$ unheated rod bundle

Nagatake, Taku; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 60(11), p.1417 - 1430, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In recent years, computational fluid dynamics (CFD) codes have been used to evaluate two-phase flow behavior inside a fuel bundle for nuclear core design and accident management. A space-time distribution of void fraction and interfacial velocity in bundle systems at high temperatures and pressures, are important for validation of two-phase flow CFD codes. However, it is difficult to obtain a space-time distribution of void fraction and interfacial velocity in a bundle system at high temperature and pressure conditions. We have so far developed an experimental apparatus with a $$4 times 4$$ unheated rod bundle by adapting a through-rod WMS to measure distributions of a void fraction and an interfacial velocity in high pressure conditions. We newly measured distributions of the void fraction and interfacial velocity in the water-vapor system under high pressure up to 2.6 MPa by the developed apparatus. It has been confirmed that reasonable results were obtained by the experimental apparatus.

Journal Articles

Sintering and microstructural behaviors of mechanically blended Nd/Sm-doped MOX

Hirooka, Shun; Horii, Yuta; Sunaoshi, Takeo*; Uno, Hiroki*; Yamada, Tadahisa*; Vauchy, R.; Hayashizaki, Kohei; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Science and Technology, 60(11), p.1313 - 1323, 2023/11

 Times Cited Count:3 Percentile:95.99(Nuclear Science & Technology)

Additive MOX pellets are fabricated by a conventional dry powder metallurgy method. Nd$$_{2}$$O$$_{3}$$ and Sm$$_{2}$$O$$_{3}$$ are chosen as the additive materials to simulate the corresponding soluble fission products dispersed in MOX. Shrinkage curves of the MOX pellets are obtained by dilatometry, which reveal that the sintering temperature is shifted toward a value higher than that of the respective regular MOX. The additives, however, promote grain growth and densification, which can be explained by the effect of oxidized uranium cations covering to a pentavalent state. Ceramography reveals large agglomerates after sintering, and Electron Probe Micro-Analysis confirms that inhomogeneous elemental distribution, whereas XRD reveals a single face-centered cubic phase. Finally, by grinding and re-sintering the specimens, the cation distribution homogeneity is significantly improved, which can simulate spent nuclear fuels with soluble fission products.

Journal Articles

Measurements of capture cross-section of $$^{93}$$Nb by activation method and half-life of $$^{94}$$Nb by mass analysis

Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi

Journal of Nuclear Science and Technology, 60(11), p.1361 - 1371, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

The thermal-neutron capture cross section ($$sigma$$$$_{0}$$) and resonance integral (I$$_{0}$$) for $$^{93}$$Nb among nuclides for decommissioning were measured by an activation method and the half-life of $$^{94}$$Nb by mass analysis. Niobium-93 samples were irradiated with a hydraulic conveyer installed in the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Gold-aluminum, cobalt-aluminum alloy wires were used to monitor thermal-neutron fluxes and epi-thermal Westcott's indexes at an irradiation position. A 25-$$mu$$m-thick gadolinium foil was used to sort out reactions ascribe to thermal-and epi-thermal neutrons. Its thickness provided a cut-off energy of 0.133 eV. In order to attenuate radioactivity of $$^{182}$$Ta due to impurities, the Nb samples were cooled for nearly 2 years. The induced radio activity in the monitors and Nb samples were measured by $$gamma$$-ray spectroscopy. In analysis based on Westcott's convention, the $$sigma$$$$_{0}$$ and I$$_{0}$$ values were derived as 1.11$$pm$$0.04 barn and 10.5$$pm$$0.6 barn, respectively. After the $$gamma$$-ray measurements, mass analysis was applied to the Nb sample to obtain the reaction rate. By combining data obtained by both $$gamma$$-ray spectroscopy and mass analysis, the half-life of $$^{94}$$Nb was derived as (2.00$$pm$$0.15)$$times$$10$$^{4}$$ years.

Journal Articles

Convergence behavior of statistical uncertainty in probability table for cross section in unresolved resonance region

Tada, Kenichi; Endo, Tomohiro*

Journal of Nuclear Science and Technology, 60(11), p.1397 - 1405, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

The probability table method is a well-known method for addressing self-shielding effects in the unresolved resonance region. A long computational time is required to generate the probability table. The effective way to reduce the generation time of the probability table is the reduction of the number of ladders. The purpose of this study is the estimation of the optimal number of ladders using the statistical uncertainty in the probability table. To this end, the statistical uncertainty quantification method of the probability table was developed and the convergence behavior of the statistical uncertainty was investigated. The product of the probability table and the average cross section was considered the target of the statistical uncertainty. The convergence rate was affected by the average level spacing and reduced neutron width. The generation time of the probability table was less than half when the input parameter was changed from the number of ladders to the tolerance value.

Journal Articles

Quantitative visualization of a radioactive plume with harmonizing gamma-ray imaging spectrometry and real-time atmospheric dispersion simulation based on 3D wind observation

Nagai, Haruyasu; Furuta, Yoshihiro*; Nakayama, Hiromasa; Satoh, Daiki

Journal of Nuclear Science and Technology, 60(11), p.1345 - 1360, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume and source term estimation of released radionuclides is proposed and its feasibility is demonstrated by preliminary test. The proposed method is the combination of gamma-ray imaging spectroscopy with the Electron Tracking Compton Camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. The 3D distribution of a specific radionuclide in a target radioactive plume is inversely reconstructed from line gamma-ray images from each radionuclide by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. A prototype of the analysis method was developed, showing a sufficient performance in several test cases using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.

Journal Articles

An Estimation method for an unknown covariance in cross-section adjustment based on unbiased and consistent estimator

Maruyama, Shuhei; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(11), p.1372 - 1385, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Impact of nuclear data revised from JENDL-4.0 to JENDL-5 on PWR spent fuel nuclide composition

Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(11), p.1386 - 1396, 2023/11

 Times Cited Count:3 Percentile:95.99(Nuclear Science & Technology)

The burnup calculations for estimating the nuclide composition of the spent fuel are highly dependent on nuclear data. Many nuclides in the latest version of the Japanese Evaluated Nuclear Data Library JENDL-5 were modified from JENDL-4.0 and the modification affects the burnup calculations. This study confirmed the validity of JENDL-5 in the burnup calculations. The PIE data of Takahama-3 was used for the validation. The effect of modifications of the parameters, e.g., cross sections and fission yields, from JENDL-4.0 to JENDL-5 on the nuclide compositions was quantitatively investigated. The calculation results showed that JENDL-5 has a similar performance to JENDL-4.0. The calculation results also revealed that the modifications of the cross sections of actinide nuclides, fission yields, and thermal scattering low data of hydrogen in H$$_{2}$$O affected the nuclide compositions of PWR spent fuels.

2555 (Records 1-20 displayed on this page)